
Trigonometrical ratios for related angles
360o Corresponds to one full revolution.sine of angles of 360o+45o;720o+45o;1080o+45o are equal to sine of 45o.This is so far the other trigonometrical ratios.That is,When an angle exceeds 360o,it can be reduced to an angle between 0o and 360o by wiping out integral multiples of 360osin(- θ) = -sinθ
sin(90- θ)=cos θ
sin(90+ θ)=cos θ
sin(180- θ)=sin θ
sin(180+ θ)= -sin θ
sin(270- θ)= -cos θ
sin(270+ θ)=-cos θ
sin(360- θ)= -sin θ
cos(- θ) = cos θ
cos(90- θ)=sinθ
cos(90+ θ)= -sinθ
cos(180- θ)= -cos θ
cos(180+ θ)= -cos θ
cos(270- θ)= -sinθ
cos(270+ θ)=sinθ
cos(360- θ)= cos θ
tan(- θ) = -tan θ
tan(90- θ)=cotθ
tan(90+ θ)= -cotθ
tan(180- θ)= -tan θ
tan(180+ θ)= tan θ
tan(270- θ)= cotθ
tan(270+ θ)= -cotθ
tan(360- θ)= -tan θ
cosec(90+ θ)=sec θ
cosec(180- θ)=cosec θ
cosec(180+ θ)= -cosec θ
cosec(270- θ)= -sec θ
cosec(270+ θ)=-sec θ
cosec(360- θ)= -cosec θ
sec(- θ) = sec θ
sec(90- θ)=cosecθ
sec(90+ θ)= -cosecθ
sec(180- θ)= -sec θ
sec(180+ θ)= -sec θ
sec(270- θ)= -cosecθ
sec(270+ θ)=cosecθ
sec(360- θ)= sec θ
cot(- θ) = -cotθ
cot(90- θ)=tanθ
cot(90+ θ)= -tanθ
cot(180- θ)= -cot θ
cot(180+ θ)= cot θ
cot(270- θ)= tanθ
cot(270+ θ)= -tanθ
cot(360- θ)= -cot θ
Gud
ReplyDeleteGud
ReplyDeleteWell u can improve
ReplyDeleteNot in a proper look....Better with graph and quadrant shower....
ReplyDeleteWell be better with graph
ReplyDelete👍👍👍
ReplyDeleteGood way
ReplyDelete