###
**Trigonometrical ratios for related angles**

360**Trigonometrical ratios for related angles**

^{o}Corresponds to one full revolution.sine of angles of 360

^{o}+45

^{o};720

^{o}+45

^{o};1080

^{o}+45

^{o}are equal to sine of 45

^{o}.This is so far the other trigonometrical ratios.That is,When an angle exceeds 360

^{o},it can be reduced to an angle between 0

^{o}and 360

^{o}by wiping out integral multiples of 360

^{o}

**sin(- θ) = -sinθ**

**sin(90- θ)=cos θ**

**sin(90+ θ)=cos θ**

**sin(180- θ)=sin θ**

**sin(180+ θ)= -sin θ**

**sin(270- θ)= -cos θ**

**sin(270+ θ)=-cos θ**

**sin(360- θ)= -sin θ**

**cos(- θ) = cos θ**

**cos(90- θ)=sinθ**

**cos(90+ θ)= -**

**sinθ**

**cos(180- θ)= -**

**cos θ**

**cos(180+ θ)=**

**-**

**cos θ**

**cos(270- θ)=**

**-**

**sinθ**

**cos(270+ θ)=**

**sinθ**

**cos(360- θ)=**

**cos θ**

**tan(- θ) = -tan θ**

**tan(90- θ)=cotθ**

**tan(90+ θ)= -**

**cotθ**

**tan(180- θ)=**

**-tan θ**

**tan(180+ θ)=**

**tan θ**

**tan(270- θ)=**

**cotθ**

**tan(270+ θ)= -**

**cotθ**

**tan(360- θ)=**

**-tan θ**

**cosec(90+ θ)=sec θ**

cosec(180- θ)=cosec θ

cosec(180+ θ)= -cosec θ

cosec(270- θ)= -sec θ

cosec(270+ θ)=-sec θ

cosec(360- θ)= -cosec θ

sec(- θ) = sec θ

sec(90- θ)=cosecθ

sec(90+ θ)= -cosecθ

sec(180- θ)= -sec θ

sec(180+ θ)= -sec θ

sec(270- θ)= -cosecθ

sec(270+ θ)=cosecθ

sec(360- θ)= sec θ

cosec(180- θ)=cosec θ

cosec(180+ θ)= -cosec θ

cosec(270- θ)= -sec θ

cosec(270+ θ)=-sec θ

cosec(360- θ)= -cosec θ

sec(- θ) = sec θ

sec(90- θ)=cosecθ

sec(90+ θ)= -cosecθ

sec(180- θ)= -sec θ

sec(180+ θ)= -sec θ

sec(270- θ)= -cosecθ

sec(270+ θ)=cosecθ

sec(360- θ)= sec θ

**cot(- θ) = -cotθ**

**cot(90- θ)=tanθ**

**cot(90+ θ)= -**

**tanθ**

**cot(180- θ)=**

**-cot θ**

**cot(180+ θ)=**

**cot θ**

**cot(270- θ)=**

**tanθ**

**cot(270+ θ)= -**

**tanθ**

**cot(360- θ)=**

**-cot θ**

Gud

ReplyDeleteGud

ReplyDeleteWell u can improve

ReplyDeleteNot in a proper look....Better with graph and quadrant shower....

ReplyDeleteWell be better with graph

ReplyDelete